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CHAPTER 1

From high to low volatility: spatial Cannings with

block resampling and spatial Fleming-Viot with

seed-bank

Andreas Greven and Frank den Hollander

In neutrally evolving populations subject to resampling and migration on ge-

ographic spaces, the longtime behaviour exhibits a classical dichotomy between

clustering of types versus coexistence of types (= between convergence to locally

monotype equilibria versus locally multitype equilibria). Which of the two scenar-

ios prevails depends on whether the difference between the lineages of two typical

individuals is a recurrent random walk or a transient random walk. In the present

contribution, for two classes of models we present results on how this dichotomy

is affected when the resampling has either high volatility or low volatility:

(I) The spatial Cannings model with block resampling, where a positive

fraction of the individuals in the next generation may inherit the type of

a single individual in the previous generation.

(II) The spatial Fleming-Viot model with seed-bank, where individuals may

become dormant for awhile, suspending resampling and migration, until

they become active again.

We will see that the dichotomy is shifted towards more clustering in class (I) and

towards more coexistence in class (II). In particular, in class (II) we will see that for

recurrent random walks (which are typical for two-dimensional geographic spaces)

an infinite seed-bank turns clustering into coexistence. We will also explore the

impact of allowing resampling that is controlled by a random environment. Along

the way we discuss robustness, universality and critical dimension.
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1.1. Background

A classical model for a spatial population evolving through neutral resampling

and migration is a system of interacting Fleming-Viot diffusions. If the geographic

space is G and the type space is K, then the state space of the process is

(1.1.1) P(K)G,

where P(K) denotes the set of probability measures on K. The process is de-

fined via a well-posed martingale problem, which arises as the diffusion limit of an

individual-based model, called the Moran model. In case K = {0, 1}, the process

(1.1.2) X = (X(t))t>0, X(t) = (xi(t))i∈G ∈ [0, 1]G,

where xi(t) denotes the fraction of individuals of type 1 in colony i at time t, takes

the form of a system of coupled SDE’s

(1.1.3)

dxi(t) =
∑
j∈G

a(i, j) [xj(t)− xi(t)] dt+
√
d xi(t)(1− xi(t)) dwi(t), i ∈ G,

where (wi(t))t>0, i ∈ G, are independent standard Brownian motions, a(·, ·) is the

migration kernel on G×G, d is the volatility constant, and

(1.1.4) X(0) = (xi(0))i∈G ∈ [0, 1]G

is the initial state.

Suppose that

(1.1.5) xi(0) = θ ∈ [0, 1] ∀ i ∈ G.

Without migration, the system in (1.1.3) reduces to a system of independent

Fisher-Wright diffusions,

(1.1.6) dxi(t) =
√
d xi(t)(1− xi(t)) dwi(t), i ∈ G,

which are martingales whose volatility vanishes only at the boundary of [0, 1]

(where genetic diversity is lost). Consequently, for all i ∈ G, xi(t) converges

in distribution as t → ∞ to the probability measure (1 − θ)δ0 + θδ1. Without

resampling, however, the system in (1.1.3) reduces to a deterministic flow,

(1.1.7) dxi(t) =
∑
j∈G

a(i, j) [xj(t)− xi(t)] dt, i ∈ G,

and xi(t) = θ for all i ∈ G and all t > 0. Thus, in (1.1.3) we have two competing

mechanisms and the outcome for the longtime behaviour depends on the properties

a(·, ·), irrespective of the value of d (see [11, 15, 41, 42]).

Indeed, let G be an Abelian group and let us start the process in a translation

invariant and spatially ergodic random initial state X(0) with E[xi(0)] = θ ∈ [0, 1],

i ∈ G. Define the symmetrized migration kernel â(i, j) = 1
2 [a(i, j) + a(j, i)], i, j ∈
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G, which is the transition kernel for the difference of the lineages of two typical

individuals. Then the following dichotomy holds (L denotes law):

(1) If â is transient, then

L [X(t)] =⇒
t→∞

νθ,(1.1.8)

where the limit law νθ on [0, 1]G is stationary and ergodic w.r.t. trans-

lations in G, with Eνθ [xi] = θ ∀ i ∈ G. Furthermore, νθ is an extremal

invariant measure that lives on configurations exhibiting coexistence of

types for every θ ∈ (0, 1).

(2) If â is recurrent, then

L [X(t)] =⇒
t→∞

(1− θ) δ0G + θ δ1G .(1.1.9)

Furthermore, all invariant measures live on configurations exhibiting clus-

tering of types, i.e., on the set {0G, 1G}, for every θ ∈ [0, 1].

Thus, if the difference random walk is transient, then in equilibrium coexistence of

types prevails, while if the difference random walk is recurrent, then in equilibrium

clustering of types prevails.

In population genetics deviations from this classical dichotomy are observed in

many instances. The reason is that the change of generation referred to as resam-

pling may be more volatile or less volatile than in the standard model described

above. Consequently, even for a fixed migration kernel, a shift from coexistence

to clustering or vice versa may occur due to a change of volatility. In the present

contribution we describe two model classes exhibiting such a shift (Section 1.2)

and describe their equilibrium behaviour (Section 1.3). A question that naturally

arises in this context is: What is the effect of including spatially inhomogeneous

evolution mechanisms? We will see that the observed shift in the dichotomy is ro-

bust against such an extension, but that other properties are not (Section 1.4). We

close by discussing extensions (Section 1.5) and future perspectives (Section 1.6).

Acknowledgement. The research within the framework of the SPP1590 de-

scribed below was carried out by the authors together with S. Kliem, A. Klimovsky

and M. Oomen. Details can be found in [26, 27, 28, 29].

1.2. Two models

Models that exhibit a high volatile change of generation are the Cannings

model [9, 10, 37, 38, 39, 40] and its spatial variant treated in [1, 6, 7, 8, 26, 27].

Below we will focus on a model class that uses the discrete hierarchical group

as geographic space [12, 13, 15]. Models that exhibit a low volatile change of

generation are the Fleming-Viot model with seed-bank [3, 4, 24] and its spatial
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variant treated in [28, 29]. Below we will focus on a model class that uses the

discrete Euclidean group as geographic space.

1.2.1. (I) The spatial Cannings process with block resampling

Cannings [9, 10] introduced a class of individual-based models in which a

positive fraction of the individuals in the next generation may inherit their type

from a single individual in the present generation, even in the large-population-

size limit. More recently this idea was extended to spatial models [1, 6]. We will

choose as geographic space the hierarchical group, allow for Cannings resampling

at all hierarchical levels simultaneously, and let migration be driven by a random

walk that is well-adapted to the hierarchical structure.

1.2.1.1. Single colony. Consider first the simple case where G consists of only

one site, with a cemetery and a source, emigration to the cemetery at rate c and

immigration from the source at rate c. Let F ⊆ Cb(P(K),R) be the algebra of

functions F of the form

(1.2.1) F (x) =

∫
K
x⊗n(du)ϕ(u), x ∈ P(K), n ∈ N, ϕ ∈ Cb(Kn,R).

Define the second Gâteaux-derivative of F with respect to x as

(1.2.2)
∂2F (x)

∂x2
[δu, δv] =

∂

∂x

(
∂F (x)

∂x
[δu]

)
[δv], u, v ∈ K.

For θ ∈ P(K), c, d ∈ [0,∞), Λ ∈ Mfin([0, 1]) (= the set of non-negative finite

measures on [0, 1]) such that

(1.2.3) Λ({0}) = 0,

∫
(0,1]

Λ(dr)

r
=∞,

let Lc,d,Λθ : F → Cb(P(K),R) be the linear operator

(1.2.4) Lc,d,Λθ = Lcθ + Ld + LΛ

acting on F ∈ F as

(1.2.5)

(LcθF )(x) = c

∫
K

(θ − x) (da)
∂F (x)

∂x
[δa],

(LdF )(x) = d

∫
K

∫
K
Qx(du, dv)

∂2F (x)

∂x2
[δu, δv],

(LΛF )(x) =

∫
(0,1]

Λ∗(dr)

∫
K
x(da)

[
F
(
(1− r)x+ rδa

)
− F (x)

]
,

where

(1.2.6) Qx(du, dv) = x(du) δu(dv)− x(du)x(dv)
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is the Fleming-Viot diffusion coefficient, and Λ∗ ∈ M([0, 1]) (= the set of non-

negative sigma-finite measures on [0, 1]) is defined by

(1.2.7) Λ∗({0}) = 0, Λ∗(dr) =
Λ(dr)

r2
, r ∈ (0, 1].

The three parts of Lc,d,Λθ correspond to: a drift towards θ of strength c (=

immigration-emigration), a Fleming-Viot diffusion with volatility d (= Moran re-

sampling), and a Λ-Cannings process with resampling measure Λ (= Cannings

resampling).

We need to generalise the above set-up to the hierarchical group, with resam-

pling and migration taking place at all hierarchical levels simultaneously.

1.2.1.2. Hierarchical group. Define [14, 40]

(1.2.8) ΩN =
⊕
i∈N

ZN ,

where ZN is the cyclical group, i.e., the set {0, 1, . . . , N−1} equipped with addition

modulo N . View ΩN as set of addresses, each of which specifies one of N houses,

in one of N neighbourhoods, in one of N villages, etc. In particular, (1.2.8) says

that i ∈ ΩN has the form (ik)k∈N0 with
∑
k∈N0

ik <∞. We define the hierarchical

distance

(1.2.9) dΩN (i, j) = min{l ∈ N0 : il = jl ∀ l > k}, i, j ∈ ΩN ,

and denote the k-ball around i by Bk(i).

1.2.1.3. Forward evolution. First we introduce the migration mechanism. As

parameters we have a sequence of numbers

(1.2.10) c = (ck)k∈N0

with ck ∈ (0,∞). At rate cK/N
k the random walk chooses the ball with radius k

around its current position, and draws its next position according to the uniform

distribution on that ball. To ensure that only finitely many jumps occur in finite

time, we need to assume that

(1.2.11)
∑
k∈N0

ck
Nk

<∞.

Next, we introduce the resampling mechanism. As parameters we have a sequence

of resampling measures

(1.2.12) Λ = (Λk)k∈N0
,

with Λk ∈ Mfin([0, 1]) playing the role of the resampling measure on hierarchical

level k. We assume that Λk({0}) = 0, k ∈ N0, and

(1.2.13)

∫
(0,1]

Λ0(dr)

r
=∞,

∫
(0,1]

Λk(dr)

r2
<∞, k ∈ N.
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In the non-spatial setting, the Λ-Cannings model with Λ ∈ Mfin([0, 1]) is

defined as follows (see [22, 38, 39]). Consider an inhomogeneous Poisson point

process on [0,∞)× [0, 1] with intensity measure

(1.2.14) dt⊗ Λ∗(dr).

For each point (t, r) in this point process, we carry out the following transition

at time t. Mark each of M ∈ N individuals independently with a 0 or a 1 with

probability 1 − r, respectively, r. All individuals marked by a 1 are killed and

are replaced by copies of a single individual (‘the parent’) that is drawn uniformly

from all the individuals marked by a 1. The continuum frequency limit is obtained

by letting M →∞.

In the spatial setting we apply Cannings resampling at all hierarchical levels si-

multaneously, in combination with a reshuffling : for each k ∈ N0, we first reassign

to every individual in the k-ball a new position according to the uniform distribu-

tion on that ball, and afterwards apply the Λk-Cannings resampling mechanism.

More precisely:

• For every i ∈ ΩN and k ∈ N0, choose the block Bk(i) at rate 1/N2k.

• Each individual in Bk(i) is first moved to a uniformly chosen random

location in Bk(i), i.e., a reshuffling takes place. After that, r is drawn

according to the intensity measure Λ∗k, and with probability r each of the

individuals in Bk(i) is replaced by an individual of type a, with a drawn

according to the empirical type distribution in Bk(i), i.e.,

(1.2.15) yi,k = N−k
∑

j∈Bk(i)

xj .

Because the reshuffling is done first, the resampling always acts on a uniformly

distributed state (‘panmictic resampling’). The continuum limit M → ∞ is the

process that we want to study. To show that this process is characterised by a

well-posed martingale problem, we need to specify its generator.

The generator L for the spatial Canning process with block resampling is

(1.2.16) L = Lmig + Lres,

where

(1.2.17) (LmigF )(x) =
∑
j∈ΩN

a(i, j)

∫
K

(xj − xi)(da)
dF

dxi
[δa]
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takes care of the migration and

(1.2.18)

(LresF )(x)

=
∑
i∈ΩN

(
(Ld0

i F )(x) +

∫
(0,1]

Λ∗0(dr)

∫
K
xi(da)

[
F
(
Φr,a,{i}(x)

)
− F (x)

]
+
∑
k∈N

N−2k

∫
(0,1]

Λ∗k(dr)

∫
K
yi,k(da)

[
F
(
Φr,a,Bk(i)(x)

)
− F (x)

])
,

takes care of the reshuffling-resampling. Here, Φr,a,Bk(η) : P(K)ΩN → P(K)ΩN is

the reshuffling-resampling map acting as

(1.2.19)
[(

Φr,a,Bk(i)

)
(x)
]
j

=

{
(1− r)yi,k + rδa, j ∈ Bk(i),

xi, j /∈ Bk(i),

where r ∈ [0, 1], a ∈ K, k ∈ N0, i ∈ ΩN , and Ld0
i is the Fleming-Viot diffusion

operator with volatility d0 acting on the colony xi.

We proved the following in [26].

Theorem 1.2.1 (The spatial Cannings process with block resampling is well de-

fined). For every initial law Γ ∈ P(K)ΩN , the (L,F ,Γ)-martingale problem is

well-posed and defines a strong Markov and Feller process.

1.2.1.4. Looking backward: Duality. An important tool in the analysis of the

Cannings process with block resampling is duality with what is called the spatial

Λ-coalescent, with the duality function given by mixed spatial monomials. For the

proper set-up of duality we refer to [23]. In a duality relation we have a process

X with state space E, a dual process Y with state space E′, and a function

(1.2.20) H : E × E′ → R, H ∈ Cb(E × E′,R),

such that

(1.2.21) Ex [H(Xt, Y )] = Ey [H(X0, Yt)] , (x, y) ∈ E × E′, t > 0.

In our setting the process Y will be a spatial coalescent driven by Λ, so that

E′ will be the set of marked partitions of a finite set, which we denote by

(1.2.22) SΩN .

We write (π, g) for an element of SΩN , where g ∈ Ω
|π|
N , π is a partition of the set

{1, . . . , n}, and the partition elements are labeled π1, . . . , πk with k = |π|. We

specify a test function ϕ ∈ Cb(K|π|,R), which we add to the dual configuration

and which remains fixed during the evolution. This allows us to bring the duality

relation into a standard form for a single function H, with the property that

{H(·, y), y ∈ E′} separates measures on the state space E and is convergence

determining (see [23]).
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The partition elements perform random walks driven by c, up to a coales-

cent event. In addition, the partition elements are subject to Λk-coalescence with

reshuffling in k-blocks for every k ∈ N0. For the reshuffling, all partition elements

in the k-block are independently assigned new positions drawn uniformly from the

block. For the Λk-coalescence, we choose at rate Λk(dr) a number r ∈ (0, 1] and

mark every partition element with probability r. All marked partition elements

coalesce into a single partition element. The function H is given by a polynomial,

(1.2.23) H(x; [(π, g), ϕ]) =

∫
K|π|

ϕ(u)xg1(du1)× · · · × xg|π|(u|π|),

where u = (u1, . . . , u|π|).

1.2.2. (II) The spatial Fleming-Viot process with seed-bank

1.2.2.1. Forward evolution. In various situations in population genetics, coex-

istence of types is observed even when the classical Fleming-Viot model predicts

clustering. The reason is that individuals may become dormant (i.e., suspend

resampling, migration, mutation, etc.) until they become active again. This is

modelled by adding seed-banks. For example, in case K = {0, 1}, letting X(t) and

Y (t) denote the frequencies of type 1 at time t in the active population, respec-

tively, the dormant population, we get the following system of coupled SDE’s:

(1.2.24)
dX(t) =

√
dX(t)(1−X(t)) dw(t) +Ke [Y (t)−X(t)] dt,

dY (t) = e [X(t)− Y (t)] dt.

Here, e is the rate of exchange between active and dormant individuals, and K is

the ratio of the sizes of the dormant population and the active population. This

system was introduced and analysed in [3, 4, 20, 21].

Including migration into the picture, focussing on the choice G = Zd, we

consider (X(t), Y (t))t>0 with

(1.2.25) X(t) = (xi(t))i∈Zd , Y (t) = (yi(t))i∈Zd ,

and obtain the following system of coupled SDE’s:

(1.2.26)

dxi(t) =
∑
j∈Zd

a(i, j)[xj(t)− xi(t)] dt

+
√
d xi(t)(1− xi(t)) dwi(t) +Ke [yi(t)− xi(t)]dt,

dyi(t) = e [xi(t)− yi(t)]dt, i ∈ Zd.

It turns out that this system exhibits a quantitative change in its longtime be-

haviour, but not a qualitative change. In particular, the dichotomy of clustering

versus coexistence holds under the same condition of recurrent versus transient

migration.
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To remedy the above situation, already in the non-spatial model it has been

proposed to introduce wake-up times (from dormant to active) with fat tails (see

[3, 4, 22]). However, this necessarily leads to non-Markovian models, which are

difficult to analyse. We therefore introduce what we call a sequence of coloured

seed-banks in every colony, with wake-up rates that allow for the wake-up time of

a typical individual to have a fat tail, so that with the colours included in the state

space the process is still Markov. In other words, we consider (X(t), Y (t))t>0 with

(1.2.27) X(t) = (xi(t))i∈Zd , Y (t) = ((yi,m(t))m∈N0
)i∈Zd ,

and the following system of coupled SDE’s:

(1.2.28)

dxi(t) =
∑
j∈Zd

a(i, j)[xi(t)− xi(t)]dt

+
√
dxi(t)(1− xi(t)) dwi(t) +

∑
m∈N0

Kmem [yi,m(t)− xi(t)]dt,

dyi,m(t) = em [xi(t)− yi,m(t)]dt, m ∈ N0, i ∈ Zd.

Here, em is the rate of exchange between active and m-dormant individuals, and

Km the ratio of the sizes of the m-dormant population and the active population.

We require that

(1.2.29) χ =
∑
m∈N0

Kmem <∞

and

(1.2.30) a(i, j) = a(j, i) ∀ i, j ∈ Zd.

Assumption (1.2.29) guarantees that the total flow from the active to the dormant

population is finite in finite time, while assumption (1.2.30) is necessary for our

claims on the longtime behaviour stated below.

The system of SDE’s in (1.2.28) determines the generator

(1.2.31)

L =
∑
i∈G

([∑
j∈G

a(i, j)(xj − xi)

]
∂

∂xi
+ xi(1− xi)

∂2

∂x2
i

+
∑
m∈N0

[
Kmem (yi,m − xi)

∂

∂xi
+ em (xi − yi,m)

∂

∂yi,m

])
,

which acts on F , the algebra of twice continuously differentiable functions depend-

ing on finitely many components. We proved the following in [28].

Theorem 1.2.2 (The spatial Fleming-Viot process with seed-bank is well defined).

For every initial law µ ∈ P([0, 1]× [0, 1]N0)Z
d

, the (L,F , µ)-martingale problem is

well-posed and defines a strong Markov and Feller process.
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1.2.2.2. Looking backward: Duality. The dual process is again a spatial coa-

lescent. However, now the coalescence and the migration occur in the active state

only. The migration is no longer a random walk. In particular, for two partition

elements to be able to coalesce they need to be at the same site and both be active.

This already indicates that coalescence is less likely to happen.

The duality function is again given by mixed spatial moments:

(1.2.32) H
(

(xi)i∈Zd ,
(
(yi,m)m∈N0

)
i∈Zd , (ni,

(
(mi,m)m∈N0

)
i∈Zd

)
= xnii (yi,m)mi,m .

Here, ni is the number of active partition elements at colony i and mi,m is the

number of dormant partition elements of colour m at colony i. The partition

elements independently follow a Markov chain on Zd ×N0, until they meet on Zd
and coalesce at rate d. In other words, coalescence works as before, but only in

the active state, while in the dormant state nothing happens. The Markov chain

has transition rates b(·, ·) given by

(1.2.33) b(i, j) =


a(i, j), i, j ∈ Zd,
0, i, j ∈ N0,

Kmem, i ∈ N0, j ∈ Zd,
em, i ∈ Zd, j ∈ N0.

1.3. Equilibrium

We next present our results for the two model classes introduced in Section 1.2.

We start by recalling the classical model of interacting Fisher-Wright diffusions

labelled by the hierarchical group.

The longterm behaviour in the classical model is best understood by using the

duality of interacting Fisher-Wright diffusions with a spatial coalescent. First note

that the function E[xi(t)(1− xi(t))] converges to 0 as t→∞ if xi(t) concentrates

on the boundary of [0, 1], and remains strictly positive otherwise. With the help of

duality we calculate, for any initial state that is translation invariant and ergodic

with mean component θ,

(1.3.1)

E[xi(t)] = θ,

E[(xi(t))
2] = qtθ + (1− qt)

∑
j,k∈ΩN

E [xj(0), xk(0)] pt ((i, j), (i, k)) ,

where qt is the probability for two partition elements to coalesce by time t, and

pt((i, j), (i, k)) is the probability conditional on non-coalescence for two partition

elements, both starting from i, to be at j and k at time t. Let q∞ = limt→∞ qt be

the probability that the partition elements eventually coalesce. Then, using that

the initial state is stationary and ergodic w.r.t. translations in ΩN , we get

(1.3.2) E
[
x2
i (t)

]
−→
t→∞

q∞θ + (1− q∞)θ2 = q∞θ(1− θ) + θ2.
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Hence

(1.3.3) E [xi(t)(1− xi(t))] −→
t→∞

(1− q∞) θ(1− θ),

which is zero when q∞ = 1 or θ ∈ {0, 1}, and strictly positive when q∞ < 1 and

θ /∈ {0, 1}. It is known that [12]

(1.3.4) q∞ = 1 ⇐⇒
∑
k∈N0

1

ck
=∞.

1.3.1. (I) Spatial Cannings with block resampling

In the case of the Cannings process with block resampling, for the coalescent

starting from two partition elements there is a strictly positive probability to co-

alesce from any distance. This makes it possible for them to coalesce with proba-

bility 1 even when q∞ < 1. In other words, coexistence may change to clustering

due to block resampling.

Indeed, set

(1.3.5) λk = Λk([0, 1]), k ∈ N0,

and let Pt(·, ·) denote the time-t transition kernel of the random walk on ΩN with

migration coefficients

(1.3.6) ck +N−1λk+1, k ∈ N0,

starting at 0. Here, the extra term N−1λk+1 comes from the reshuffling that

takes place before the resampling, which induces additional migration. Define the

hazard

(1.3.7) HN =
∑
k∈N0

λkN
k

∫ ∞
0

ds P2s(0, Bk(0)),

where Bk(0) is the k-block in ΩN around 0. Let

(1.3.8) Varx(ψ) = Qx(du, dv)ψ(u)ψ(v),

with Qx(du, dv) defined in (1.2.6), and

(1.3.9) Eνθ [Var(·)(ψ)] =

∫
P(K)

νθ(dx)Varx(ψ).

We proved the following in [26].

Theorem 1.3.1 (Dichotomy for Cannings with block resampling).

(a) [Coexistence] If HN <∞, then

(1.3.10) lim
t→∞

inf sup
ψ∈Cb(K,R)

Exi(t)[Var(ψ)] > 0 ∀ i ∈ ΩN .
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(b) [Clustering] If HN =∞, then

(1.3.11) lim
t→∞

sup
ψ∈Cb(K,R)

Exi(t)[Var(ψ)] = 0 ∀ i ∈ ΩN .

This in turn leads to the following picture:

Theorem 1.3.2 (Ergodic behaviour for finite N). The following dichotomy holds:

(a) [Coexistence] If H̄N < ∞, then for every θ ∈ P(K) and every X(0)

whose law is stationary and ergodic w.r.t. translations in ΩN with single-

site mean θ,

(1.3.12) L [X(t)] =⇒
t→∞

ν
c,λ
θ ∈ P(P(K)ΩN )

for some unique law ν
c,λ
θ that is stationary and ergodic w.r.t. translations

in ΩN with single-site mean θ.

(b) [Clustering] If H̄N =∞, then for every θ ∈ P(K),

(1.3.13) L [X(t)] =⇒
t→∞

∫
K
θ(du) δ(δu)ΩN ∈ P(P(K)ΩN ).

We can now compare the classical process with the Cannings process. We

focus on the volatility of the k-block averages

(1.3.14) Y
(N)
k (t) =

1

Nk

∑
j∈Bk(i)

xi(tN
k), i ∈ ΩN , t > 0,

in the hierarchical mean-field limit N →∞. Let

(1.3.15) d∗ = (d∗k)k∈N0

be the sequence of volatilities of the k-block averages when µ0 > 0 and µk = 0

for all k ∈ N, i.e., when there is resampling in single colonies but not in blocks of

colonies. This sequence has initial value d∗0 = 0 and satisfies the recursion relation

[26]

(1.3.16) d∗1 = d1 =
c0µ0

c0 + µ0
,

1

d∗k+1

=
1

ck
+

1

d∗k
, k ∈ N,

whose solution is

(1.3.17) d∗k =
1
2λ0

1 + 1
2λ0σk

, k ∈ N, σk =

k−1∑
l=0

1

cl
.

Let

(1.3.18) d = (dk)k∈N0

be the sequence of volatilities of k-block averages in the spatial Cannings process

with block resampling. We proved the following in [26].



1.3. EQUILIBRIUM 15

Theorem 1.3.3 (Comparison of hierarchical Fleming-Viot and hierarchical Can-

nings). The following hold for d = (dk)k∈N0
:

(a) The maps c 7→ d and λ 7→ d are component-wise non-decreasing.

(b) d > d∗ component-wise.

(c) Clustering occurs if and only if
∑
k∈N0

(1/ck)
∑k
l=0 λl =∞.

(d) If limk→∞ σk =∞ and
∑
k∈N σkλk <∞, then limk→∞ σkdk = 1.

In particular, (a),(b) say that both migration and reshuffling-resampling increase

the volatility, (c) says that the dichotomy due to migration is affected by the

reshuffling-resampling only when the latter is strong enough, i.e., when
∑
k∈N0

λk =

∞, while (d) says that the scaling behaviour of dk in the clustering regime is

unaffected by the reshuffling-resampling when the latter is weak enough, i.e., when∑
k∈N σkλk <∞.

1.3.2. (II) Spatial Fleming-Viot with seed-bank

For the system with seed-bank we obtain the following dichotomy for the

longtime behaviour. Define

(1.3.19) % =
∑
m∈N0

Km.

The wake-up time of a typical individual, denoted by τ , has distribution

(1.3.20) P (τ > t) =
∑
m∈N0

Kmem
χ

e−emt.

Suppose that

Km ∼ Am−α, em ∼ Bm−β , m→∞,(1.3.21)

where A,B ∈ (0,∞) and α, β ∈ R with α < 1 < α + β. Subject to (1.3.21), we

have

(1.3.22) P (τ > t) ∼ Ct−γ , t→∞,

where

(1.3.23) γ =
α+ β − 1

β
∈ (0, 1), C =

A

β
B1−γγΓ(γ) ∈ (0,∞),

with Γ the Gamma-function.

There is a principal difference between the cases % < ∞ and % = ∞. We

proved the following in [28].

Theorem 1.3.4 (Dichotomy and longtime behaviour). Suppose that the law of

(X(0), Y (0)) is stationary and ergodic w.r.t. translations in Zd with single-site
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mean θ ∈ [0, 1]. Define the hazards

(1.3.24) Ha =

∫ ∞
0

at(0, 0)dt, Ha,γ =

∫ ∞
0

at(0, 0)t−(1−γ)/γdt.

(a) Suppose that % <∞. If Ha <∞, then

(1.3.25) L[(X(t), Y (t)] =⇒
t→∞

ν
K,e
θ ∈ P(([0, 1]× [0, 1]N0)Z

d

),

where ν
K,e
θ is an equilibrium measure that is stationary and ergodic w.r.t. transla-

tions in Zd, and satisfies Eνθ [(xi, yi)] = (θ, θ), where

(1.3.26) θ = lim
M→∞

[
x0 +

∑M
m=0Kmy0,m

1 +
∑M
m=0Km

]
.

If Ha =∞, then

(1.3.27) L[(X(t), Y (t))] =⇒
t→∞

(1− θ) δ
(0,0N0 )Zd

+ θ δ
(1,1N0 )Zd

.

(b) Suppose that % = ∞. Then the above dichotomy holds with Ha replaced by

Ha,γ .

We see that if % = ∞, then the dichotomy is shifted and recurrent migration can

still lead to coexistence. For γ ∈ ( 1
2 , 1) there is an interesting competition between

the migration and the seed-bank, while for γ ∈ (0, 1
2 ) the seed-bank completely

dominates and coexistence occurs no matter what is the migration. In particular,

in d = 2 for symmetric migration with finite second moments, there is clustering

without seed-bank but coexistence with seed-bank (for all γ ∈ (0, 1)). For biology

this is an important observation.

1.3.3. The three model classes in comparison

We can now compare the longtime behaviour in the different models described

above. The key quantity is the hazard of two dual partition elements to coalesce.

In the classical model the hazard is

(1.3.28) H =

∫ ∞
0

dt ât(0, 0) = Ĝ(0, 0),

where Ĝ(·, ·) is the Green function of the difference random walk. We saw that

in the other two models the hazard is different. Nevertheless, in the formula for

the hazard the transition kernel at(·, ·) still appears (with ât(·, ·) = at(·, ·) because

in (1.2.30) we assumed a(·, ·) to be symmetric). The Cannings model with block

resampling gives a decrease of the effective dimension, while the Fleming-Viot

model with seed-bank gives an increase of the effective dimension, both resulting

in a change of the critical dimension. This can be made quantitative with the

help of the so-called degree of the random walk, for which we refer the reader to

[12, 13].
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1.4. Random environment

Often it is more realistic to assume that the mechanism of evolution is spatially

inhomogeneous. The important question is whether this change affects the long-

time behaviour qualitatively or not. We will explore this issue for the Cannings

process with block resampling. In particular, we will look at the situation where

the resampling rates are spatially inhomogeneous.

To define the modification of the model introduced in Section 1.2.1.3, we need

to consider the full tree, i.e.,

(1.4.1) ΩT
N =

⋃
k∈N0

Ω
(k)
N , Ω

(k)
N = ΩN/Bk(0),

where ΩN/Bk(0) denotes the quotient group of ΩN modulo Bk(0) (recall (1.2.9)).

Note that the leaves of the tree form the set ΩN . For ξ ∈ ΩT
N , write

(1.4.2) |ξ| = the height of ξ (counting from the leaves),

i.e., |ξ| = k when ξ ∈ Ω
(k)
N for k ∈ N0, and define

(1.4.3) B|ξ|(ξ),

to be the set of sites in ΩN that lie below ξ. We want to make the reshuffling-

resampling spatially random. To that end, let

(1.4.4) Λ(ω) =
{

Λξ(ω) : ξ ∈ ΩT
N

}
be a random field of Mfin([0, 1])-valued resampling measures indexed by the tree.

Throughout the paper, we use the symbol ω to denote the random environment

and the symbol P to denote the law of ω. We assume that Λξ(ω) is of the form

(1.4.5) Λξ(ω) = λ|ξ|χ
ξ(ω),

where λ = (λk)k∈N0
is a deterministic sequence in (0,∞) and

(1.4.6) {χξ(ω) : ξ ∈ ΩT
N}

is a random field of Mfin([0, 1])-valued resampling measures that is stationary

under translations in ΩT
N .

Abbreviate

(1.4.7) ρξ(ω) = χξ(ω)((0, 1]),

which is the total mass of χξ(ω). Clearly,

(1.4.8) {ρξ(ω) : ξ ∈ ΩT
N}

is a random field of (0,∞)-valued total masses that is also stationary under trans-

lations in ΩT
N . We assume that

(1.4.9) E[ρξ(ω)] = 1, E[(ρξ(ω))2] = C ∈ (0,∞),
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and that the sigma-algebra at infinity associated with (1.4.7), defined by

(1.4.10)

T =
⋂
L∈N0

FL, FL = σ
(
ρξ(·) with ξ ∈ ΩT

N such that dΩT
N

(0, ξ) > L
)
,

is trivial, where dΩT
N

denote the hierarchical distance on ΩT
N .

We proved the following in [27].

Theorem 1.4.1 (Longtime behaviour for Cannings in random environment). Fix

N ∈ N\{1}. Suppose that, under the law P, the law of the initial state X(ω; 0) is

stationary and ergodic w.r.t. translations in ΩN , with single-site mean

(1.4.11) θ = E
[
X0(ω; 0)

]
∈ P(K).

Then, for P-a.e. ω, there exists an equilibrium measure νθ(ω) ∈ P(P(K)ΩN ), aris-

ing as

(1.4.12) lim
t→∞

L
[
X(ω; t)

]
= νθ(ω),

satisfying

(1.4.13)

∫
P(K)ΩN

x0 νθ(ω)(dx) = θ.

Moreover, under the law P, the random variable νθ(ω) is stationary and ergodic

w.r.t. translations in ΩN .

The proof of Theorem 1.4.1 is based on a computation with the dual process,

which allows us to control second moments. In random environment this com-

putation involves two random walks in the same environment, and the difference

of the two random walks is not a random walk itself. We identify the parameter

regime for which νθ(ω) is a multitype equilibrium (= coexistence given ω),

(1.4.14) sup
f∈Cb(K,R)

∫
P(K)ΩN

νθ(ω)(dx)

∫
K

[f(u)− θ]2 x0(du) > 0,

respectively, a monotype equilibrium (= clustering given ω), i.e.,

(1.4.15) νθ(ω) =

∫
K
δ(δu)ΩN θ(du).

We proved the following in [27].

Theorem 1.4.2 (Dichotomy for Cannings in random environment). Fix N ∈
N \ {1} and assume (1.4.5)–(1.4.10).

(a) Let C = {ω : in ω coexistence occurs}. Then P(C) ∈ {0, 1}.
(b) P(C) = 1 if and only if

(1.4.16)
∑
k∈N0

1

ck +N−1λk+1

k∑
l=0

λl <∞.
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Thus, we see that the dichotomy between coexistence and clustering is preserved:

the effect of the random environment is not qualitative: only quantitative changes

occur. For example, the random environment lowers the volatility dk on every

hierarchical scale k compared to the average environment. The intuition behind

this is that the random environment causes fluctuations in the resampling, which in

turn reduce the clustering. For some choices of c and λ the random environment

slows down the growth of the monotype clusters, i.e., enhances the diversity of

types.

1.5. Extensions

Having completed our brief description of the two model classes (I) and (II),

we discuss some interesting questions that are treated in our papers but that we

cannot discuss in detail here.

1.5.1. On some generalisations of the model classes

Our models allow for more general geographic spaces replacing ΩN or Zd,
namely, other countable abelian groups. Our results on the longtime behaviour on

ΩN (for Cannings with block resampling ) and on Zd (for Fleming-Viot with seed-

bank) in fact hold more generally on countable, abelian and irreducible groups.

Furthermore, concerning resampling, for example, in case K = {0, 1} we can re-

place the volatility function gFW(x) = x(1− x), x ∈ [0, 1], in the classical Fisher-

Wright diffusion by volatility functions g(x) with g(0) = g(1) = 0, g(x) > 0 for

x ∈ (0, 1), and g locally Lipschitz on [0, 1]. This requires some new methods of

proof, including coupling, since duality cannot be used anymore. However, the

same phenomena prevail.

In the case of more than two types, i.e., when we pass from the Fisher-Wright

model to the Fleming-Viot model, the basic questions about uniqueness of the

martingale problem remain open for state-dependent volatility, and only small sets

of possible volatility functions can be handled (see [16]). Still, the same phenomena

persist once we assume well-posedness. Our methods should in principle alos carry

over to the multitype case in the presence of seed-banks, but this has to be worked

out in more detail.

1.5.2. Justification of the model: Limits of individual-based models

Our models arise from individual-based models with M individuals (respec-

tively, M individuals per site) in the limit as M →∞ when the individuals carry

mass 1/M . This justifies the form of the generators as they appeared above. We

can show tightness in path space and obtain convergence to the solution of the

martingale problem. We can show that many individual-based models converge to

the same diffusion model. For example, we can relax the assumption that active
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and dormant states follow a strict exchange, as used above, and allow for active

individuals to become dormant at a prescribed rate and dormant individuals to

become active at a another prescribed rate, independently.

1.5.3. Analysis close to the critical dimension

On Zd the critical dimension is d = 2, which separates recurrence from tran-

sience and which itself is recurrent. Thus, for d 6 2 we have clustering and for

d > 3 we have coexistence. For the behaviour of spatial populations in general we

should find that it is the interplay of the dimension and the structure of the mi-

gration kernel that determines clustering or coexistence. Dawson, Gorostiza and

Wakolbinger [12, 13] showed that the proper concept is the degree of the underly-

ing random walk, which is a real number > −1. Here, −1 corresponds to positive

recurrence (in the classical sense of finite mean return time), the interval (−1, 0)

corresponds to strong recurrence (for instance, simple random walk on Z), 0 to

critical recurrence, (0, 1] to transience, and (1,∞) to strong transience.

The random walk on ΩN with ck = ck, k ∈ N0, and c ∈ (0, N) has degree

log c/(logN − log c). Hence the degree is 0 for c = 1 (the critical case), but

converges to 0 as N →∞, either from above or from below depending on whether

c > 1 or c < 1. This means that we may approach criticality and may examine the

issue of finding all universality classes for the large scale behaviour. In [24, 25, 29]

we gave concrete answers in terms of a so-called renormalisation analysis.

1.6. Perspectives

We close with a brief look at the future. The model classes we have discussed in

the present contribution pose many challenges and should be investigated further

from at least two perspectives:

– Define and analyse the process of evolving genealogies of populations,

using the approach by Depperschmidt, Greven, Pfaffelhuber and Winter

outlined in [17]. Exploit this process to investigate the effect on the

genealogy of an increase or a decrease of the resampling volatility.

– Identify the universality classes for the large space-time scaling. This can

be done by taking the spatial continuum limit, in which case the possible

limit dynamics represent the possible universality classes.

The genealogies are described by equivalence classes of ultrametric measure

spaces, as developed in [18, 30], and the evolution of the process is given via

martingale problem, an approach developed for non-spatial models in [19, 31] and

for spatial models in [32, 33]. For models with seed-bank, because of the presence

of long inactive ancestral lines this approach requires a technique developed by

Gufler [34, 35], which codes the length of the pieces of ancestral path in order to

treat singular settings.
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The continuum space limit for genealogies must be based on ideas going back

to [33], where the Fleming-Viot model on the geographic space R was treated. We

need to extend this analysis to the continuum hierarchical group, and we need to

cope with the Cannings mechanism. This involves replacing the Brownian motion

and the Brownian web by Lévy-processes and Lévy-webs.
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abilités de Saint-Flour XXXIX-2009, Lecture Notes in Mathematics 2012, Springer, Berlin,

2011.

[23] S.N. Ethier and T.G. Kurtz. Markov Processes. Characterization and Convergence. John

Wiley & Sons, 1986.

[24] N. Freeman. The segregated Λ-coalescent. Ann. Probab., 43:435-467, 2015.

[25] A. Gonzales Casanova, E. Aguirre-von Wobeser, G. Espin, L. Servin-Gonzalez, N. Kurt,

D. Spano, J. Blath, and G. Soberon-Chavez. Strong seed-bank effects in bacterial evolution.

J. Theor. Biol., 356:62–70, 2014.

[26] A. Greven, F. den Hollander, S. Kliem and A. Klimovsky. Renormalisation of hierarchically

interacting Cannings processes. ALEA Lat. Am. J. Probab. Math. Stat., 11:43–140, 2014.

[27] A. Greven, F. den Hollander and A. Klimovsky. The hierarchical Cannings process in random

environment. ALEA Lat. Am. J. Probab. Math. Stat., 15:295-351, 2018.

[28] A. Greven, F. den Hollander and M. Oomen. Spatial populations with seed-bank: well-

posedness, equilibrium and finite-systems scheme. Preprint, 2019.

[29] A. Greven, F. den Hollander and M. Oomen. Spatial populations with seed-bank: renormal-

isation on the hierarchical group. Preprint, 2019.

[30] A. Greven, P. Pfaffelhuber and A. Winter. Convergence in distribution of random metric

measure spaces (Λ-coalescent measure trees). Probab. Theory Relat. Fields, 145:285–322,

2009.

[31] A. Greven, P. Pfaffelhuber and A. Winter. Tree-valued resampling dynamics martingale

problems and applications. Probab. Theory Relat. Fields, 155:789–838, 2013.
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